Progression Coverage and

 vocabulary progression 2022-2023Expectations for progress: Place value

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Recognise some numerals of personal significance.	Count, read and writenumbers to 100 in numerals.	Recognise the place valueof each digit in a two- digit number.	Recognise the place value of each digit in athree-digit number.	Recognise the place valueof each digit in a four- digit number.	Interpret negative numbers in context, countforwards and backwards with positive and negative whole numbers, including through zero.	Use negative numbers incontext, and calculate intervals across zero.
Count objects, actionsand sounds.	Read and write numbersto 20 in numerals and words.	Compare and order numbers from 0 up to 100 ; use <, > and = signs.	Compare and order numbers up to 1000.	Order and compare numbers beyond 1000.	Read, write, order and compare numbers up to 1000000 and determine the value of each digit.	Read, write, order and compare numbers up to 10000000 and determine the value of each digit.
Subitise	Partition 2 digit numbersinto tens and units.	Identify, represent and estimate numbers usingdifferent representations, including the number line.	Identify, represent and estimate numbers usingdifferent representations.	Round any number to thenearest 10,100 or 1000.	Round any number up tol 000000 to the nearest 10, 100, 1000, 10000 and 100000 .	Round any whole numberto a required degree of accuracy.
Link number symbolswith its cardinal number value.	Identify and represent numbers using objects and pictorial representations including the number line.	Read and write numbersto at least 100 in numerals and in words.	Read and write numbersto 1000 in numerals and in words.	Identify, represent and estimate numbers usingdifferent representations.	Read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	
Count beyond 10.				Read Roman numerals tol00 (I to C) and know that over time, the numeral system changedto include the concept of zero and place value.	Recognise and use squarenumbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed ${ }^{(3)}$.	
Compare numbers						

Expectations for progress: Addition

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Understand one more than and therelationship between consecutive numbers.	Count to, read and writenumbers across 100.	Use partitioning and add2 digit number.	Partition using columns for addition - involve crossing 10 then 100.	Formal column method ofaddition (4 digit numbers).	Introduce adding decimalin a column.	Add negative integers.
Understand the composition of numbers up to 10.	Number bonds 10, 20 \& 100.	Apply written methods aswell as concrete objects.	add and subtract numbersmentally, including: HTO+O, HTO+T and $\mathrm{HTO}+\mathrm{H}$	Involve 2 step problems.	Read, write \& comparenumbers to at least 1,000,000.	Consolidating \& applying knowledge tosolve problems.
Automatically recall number bonds for 0-5 andto 10.	Add 1 \& 2 digit numbers to20 including 0 .	Adding 3 digit numbersusing partitioning.	Add and subtract numberswith up to three digits, using formal written methods of columnar addition.	Adding 3 lots of four digitnumbers.	Interpret negative numbers in context, calculate intervals acrosszero.	Perform mental calculations, including with mixed operations and large numbers.
In practical activities and discussion, beginning to usethe vocabulary involved in addition.	Solve one step problems that involve addition usingconcrete objects and mentally.	Understanding of commutative law inrelation to addition.	Estimate the answer to a calculation and use inverseoperations to check answers	Doubling \& halving 2, $3 \& 4$ digit number (odd numbers).	Solve number problems \& practical problems.	
	Doubling \& halving simplenumbers.	Use inverse to checkmissing number problems.	Solve problems, includingmissing number problems,using number facts, place value, and more complex addition and subtraction.	Estimate and use inverse operations to check answers to a calculation.	Add and subtract numbers mentally withincreasingly large numbers	
	Missing \& number problems.	Doubling \& halving including multiples of 12.		Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Add and subtract wholenumbers with more than4 digits, including usingformal written methods.	
	Use language of equal to, more than.	Extend mental mathsstrategies to include number			Use rounding to check answers to calculationsand	

Expectations for progress: Subtraction

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Understand one less than and the relationship between consecutive numbers.	Subtract by finding the difference on a numberline.	Subtract by finding the difference on a numberline.	Subtract by finding the difference on a numberline.	Subtract using formalcolumn method.	Subtract using formalcolumn method.	Subtract using formalcolumn method.
Uses the language of 'more' and 'fewer' to compare two sets ofobjects.	Numbers should extend as children become more confident. This then needs applying to problems both written and practical.	Begin to do larger jumpsof 10 or 2.	Use a number line to make bigger jumps. Mixture of numbers counting onto the nextwhole 10, 100.	Application to number challenges using inverseto check.	Decimals (as money)	Decimals (as money)
In practical activitiesand discussion, beginning to use thevocabulary involved in subtraction.	Missing number sentences.	Extension work to involve3 digit numbers.	Doubling / halving 2, 3and 4 digit number.	Estimate and use inverse operations to check answers to a calculation.	Application to number challenges using inverseto check.	Application to number challenges using inverseto check.
	Application to number challenges using inverseto check.	Application to number challenges using inverseto check.	Application to number challenges using inverseto check.	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.		
			add and subtract numbers mentally, including: HTO + O, $\mathrm{HTO}+\mathrm{T}$ and $\mathrm{HTO}+\mathrm{H}$			
			Add and subtract numbers with up to three digits, using formal written methods of columnar addition.			

Expectations for progress: Multiplication

Year 1	Year 2	Year 3	Year 4	Year 5 \& Year 6
Solve simple one step problems involving 'groupof' concrete and	2, 5, 10 times table and understand it as repeated addition.	Children should know all times tablesby end of year.	Consolidate all times tables.	Consolidate all times tables.
	Learn these tables, extend to 3, 4 when confident.	Introduce multiplication in formal method. 2 by 1 digit	Formal column multiplication methods	Multiply multi digit numbers up to 4 digit whole numbers using formal method.
	Solve problems using materials, array \& repeated addition.	Application to number challenges. Real life situations \& problems.	$2 \& 3$ digit x 1 digit. Extend to 4 digits in columns.	Multiply decimal numbers by 10,100 and $1000 .$
	Calculate simple number sentencesusing table they know - begin to use grid method with higher ability.	Counting in multiples of $4,8,50$ \& 100. (6, 7, 9, 25 \& 1000 extension)	Application to number challenges. Reallife situations \& problems.	Identify multiples, factors, commonfactors and prime numbers.
	Understand cumulative law with x link to +.			Recognise squared and cubed numbers.
	Application to number challenges. Real life situations \& problems.			Application to number challenges. Real life situations \& problems.

Expectations for progress: Division

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Solve simple one step problems involving divisionusing concrete / pictorial objects.	Share between physicallyinto groups, then put ontoa number line.	Divide using formal methodstarting at 0 .	Use place value to recall multiplication and divisionfacts for all tables.	Use place value to recall multiplication and divisionfacts for all tables.	Use place value to recall multiplication and division factsfor all tables.
Using sharing to understand the concept.	Larger numbers.	Calculate with small remainders when confident.	Divide mentally using known facts.	Divide mentally using known facts.	Divide mentally using known facts.
Application into number challenges, use invers of known x tables to check answers.	Simple remainders.	Larger number.	Use times tables to divide by2 \& 3 digit number.	Use times tables to divide 4digit by 2 \& 3 digit numbers.	Use times tables to divide 4 digitby $2 \& 3$ digit numbers.
	To understand the inverse to prove it.	Apply to fractions.		Give remainders as a fraction / decimal.	Use knowledge of BODMAS to carry out calculations.

Expectations for progress: Fractions

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Recognise, find and name ahalf as one of two equal parts of an object, shape or quantity.	Recognise, find, name and write fractions $1 / 3$, ` $1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity.	Count up or down intenths.	Count up or down inhundredths.	Recognise mixed numbers and improper fractions andconvert from one to the other.	Use common factors tosimplify fractions.
Recognise, find and name aquarter as one of four equal parts of an object, shape or quantity.	Write simple fractions and recognise the equivalence of $2 / 4$ and 1/2.	Recognise that tenths arise from dividing an object into 10 equal parts and in dividing one digit numbersof quantities by 10.	Recognise that hundredths arise from dividing an objectby 100 and dividing tenths by 10.	Write mathematical statements > 1 as a mixednumber.	Use common multiples to express fractions in the samedenomination.
		Compare and order unit fractions and fractions withthe same denominators.	Recognise and show, usingdiagrams, families of common equivalent fractions.	Compare and order fractionswhose denominators are all multiples of the same number.	Add and subtract fractionswith different denominatorsand mixed numbers, using the concept of equivalent fractions.
		Recognise and show, usingdiagrams, equivalent fractions with small denominators.	Solve problems involving increasingly harder fractionsto calculate quantities, and fractions to divide quantities, including non- unit fractions where the answer is a whole number.	Identify, name and write equivalent fractions of a given fraction, representingvisually, including tenths and hundredths.	Multiply simple pairs of proper fractions, writing theanswer in its simplest form.
		Recognise, find and write fractions of a discrete set ofobjects with small denominators.	Add and subtract fractions with the same denominator.	Add and subtract fractions with the same denominator and denominators that are multiples of the same number.	Divide proper fractions bywhole numbers.
		Add and subtract fractionswith the same denominatorwithin one whole.	Solve simple measure andmoney problems involvingfractions and decimals totwo decimal places.	Multiply proper fractions andmixed numbers by whole numbers, supported by materials and diagrams.	
		Solve problems using all fraction knowledge.			

Expectations for progress: Decimals and percentages

Year 4	Year 5	Year 6
Recognise and write decimal equivalents of any numberof tenths or hundredths	Read and write decimal numbers as fractions	Associate a fraction with division and calculate decimal fractionequivalents [for example, 0.375] for a simple fraction
Recognise and write decimal equivalents to $1 / 4,1 / 2$ and3/4	Recognise and use thousandths and relate them totenths, hundredths and decimal equivalents	Identify the value of each digit in numbers given to three decimalplaces
Find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths	Round decimals with two decimal places to the nearestwhole number and to one decimal place.	Multiply and divide numbers by 10,100 and 1000 giving answersup to three decimal places.
Round decimals with one decimal place to the nearestwhole number	Read, write, order and compare numbers with up to threedecimal places	Multiply one-digit number with up to two decimal places by wholenumbers
Compare numbers with the same number of decimalplaces up to two decimal places	Recognise the per cent symbol (\%) and understand thatper cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal	Se written division methods in cases where the answer has up totwo decimal places
	Solve problems involving number up to three decimalplaces	Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use ofpercentages for comparison
	Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25	Recall and use equivalences between simple fractions, decimals andpercentages, including in different contexts.
		Solve problems, which require answers to be rounded to specifieddegrees of accuracy.
		Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.

Expectations for progress: Measurement

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
They use past, presentand future forms accurately when talking about events that have happened or are to happen in the future. They develop their own narratives and explanations by connecting ideas or events.	Compare, describe and solve practical problems for: length/height, weight/mass, capacity/volume \& time.	Choose and use appropriate standard units to estimate and measure length/height (m / cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ml) to thenearest appropriate unit, using rulers, scales, thermometers and measuring vessels.	Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$).	Convert between differentunits of measure estimate, compare and calculate different measures, including money in pounds and pence.	Convert between differentunits of metric measure.	Solve problems involvingthe calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.
Can describe their relative position suchas 'behind' or 'next to'.	Measure and begin to record length/height, weight/mass, capacity/volume \& time.	Compare and order lengths, mass, volume/capacity and record the results using $>$, < and $=$.	Measure the perimeter ofsimple 2-D shapes.	Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.	Understand and use approximate equivalencesbetween metric units and common imperial units such as inches, pounds and pints.	Use, read, write and convert between standardunits, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places.
Compare weight, length and capacity.	Recognise and know thevalue of different denominations of coinsand notes.	Recognise and use symbols for pounds (£) and pence (p); combineamounts to make a particular value.	Add and subtract amounts of money to give change, using both £ and p in practical contexts.	Find the area of rectilinear shapes bycounting squares.	Estimate volume and capacity.	Convert between milesand kilometres.
Select, rotate and manipulate shapes todevelop spatial reasoning.	Sequence events in chronological order usinglanguage recognise and use language relating to dates, including days of the week, weeks, months and years.	Find different combinations of coinsthat equal the same amounts of money.	Tell and write the time from an analogue clock,including using Roman numerals from I to XII, and 12 hour and 24-hour clocks.	Convert between differentunits of measure (e.g. Hours to minutes).	Measure and calculate theperimeter of composite rectilinear shapes in centimetres and metres.	Recognise that shapes with the same areas canhave different perimetersand vice versa.

Continue, copy andcreate repeating patterns.	Tell the time to the hour and half past the hour and draw the hands on aclock face to show these times.	Solve simple problems ina practical context involving addition and subtraction of money ofthe same unit, includinggiving change.	Estimate and read timewith increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight.	Read, write and converttime between analogue and digital 12- and 24- hour clocks.	Calculate and compare the area of rectangles (including squares), and including using standardunits, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes.	Recognise when it is possible to use formulaefor area and volume of shapes.
Beginning to use everyday languagerelated to money.		Compare and sequenceintervals of time	Know the number of seconds in a minute andthe number of days in each month, year and leap year and compare durations of events.	Solve problems involvingconverting from hours tominutes; minutes to seconds; years to months; weeks to days.	Use all four operations tosolve problems involvingmeasure [for example, length, mass, volume, money] using decimal notation, including scaling.	Calculate the area ofparallelograms and triangles.
Orders and sequencesfamiliar events.		Tell and write the time tofive minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.			Solve problems involving converting between unitsof time.	Calculate, estimate and compare volume of cubesand cuboids using standard units, includingcubic centimetres (cm3) and cubic metres (m3), and extending to other units.
		Know the number of minutes in an hour and the number of hours in a day.				

Expectations for progress: Geometry

		Order and arrange combinations of mathematical objects inpatterns and sequences.	Identify right angles, recognise that two rightangles make a half- turn, three make three quarters of a turn and four a complete turn.	Describe movements between positions as translations of a given unit to the left/right andup/down.	Identify angles at a pointand one whole turn (total 360°); at a point on a straight line and $1 / 2$ a turn(total 180°) and identify other multiples of 90°.	Describe positions on thefull coordinate grid (all four quadrants).
		Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of rightangles for quarter, half and $1 / 4$ turns.	Identify whether anglesare greater or less than right angle.	Plot specified points and draw sides to complete a given polygon.	Identify, describe and represent the position of ashape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	Draw and translate simple shapes on the coordinate plane, and reflect them in the axes.

Vocabulary coverage Mathematics

"The national curriculum for mathematics reflects the importance of spoken language in pupils' development across the whole curriculum - cognitively, socially and linguistically. The quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and presenting a mathematical justification, argument or proof. They must be assisted in making their thinking clear to themselves as well as others, and teachers should ensure that pupils build secure foundations by using discussion to probe and remedy their misconceptions."
National Curriculum in England, Department for Education, 2013
Using correct mathematical language is crucial for thinking, learning and communicating mathematically. Children may build knowledge through remembering information thatthey hear, but it is only when they put these ideas into their own words that it becomes clear whether concepts have been learned effectively. It is in listening to children talking about mathematics that we, as teachers, can best assess what they are actually learning and understanding. This enables us to identify and address any misconceptions that might be developing.
We need to encourage children to explain what they are doing and why they are doing it. We must offer them opportunities to use mathematical language frequently, for example by participating in paired activities, group discussions and games as well as other dialogues. This will help children to learn new vocabulary, to use words they already know more accurately, and to express new ideas and new thinking.

It is important to introduce children to the correct vocabulary at the appropriate time and within a suitable context. It is often helpful to do this using relevant real-life objects, mathematical manipulatives and visual representations such as pictures and diagrams. All children need regular, planned opportunities to develop their mathematical vocabulary in order that they become familiar with the language and are not confused by mathematical terms. They need to acquire the words necessary for them to take part in lessons and activities, respond to questions correctly and carry out tasks successfully. Fun games and activities, such as the following example, can be a useful way to rehearse words and their meanings regularly.

Please note: progression through each year group's vocabulary is intended to build on that taught in the previous year group.

	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Number	Zero Nothing at all Number Used to count one, two, three ... totwenty and beyondequal is the same as pattern a repeated sequence count to list the numbers to find the total	In addition to all previous vocabulary... numeral / digit A symbol which represents an amountforwards Counting by adding one more every time Backwards Counting by removingone every time $>$ greater than < less than Numbers up to 100	In addition to allprevious vocabulary... tally a record of anamount sequence a list of number or objects in a specialorder	In addition to all previous vocabulary... Roman numerals Letters representing numbers in the Romannumerical system Numbers up to 1000	In addition to allprevious vocabulary... Consecutive Numbers that followeach other, in the right order Integer A whole number negative number A number less than zero Ascending From smallest tolargest Descending From largest to smallest	In addition to allprevious vocabulary... \geq Greater than or equalto \leq Less than or equal to Numbers up to 1 million	In addition to allprevious vocabulary... Numbers to 10million
Place Value	Greater Bigger thanLess Smaller than one more The number thatcomes next one less The number thatcomes before order compare What is the sameand different ones single symbol usedto make a numeral	In addition to all previous vocabulary... equal to the same as tens ten ones half-way betweenthe exact middle representation A visible model	In addition to allprevious vocabulary... Hundreds Ten tens one-, two- or three-digit number A number represented by _digits place value the value of each digit in a number exchange to take an equivalentamount	In addition to all previous vocabulary... three-digit A number represented by 3 digits	In addition to allprevious vocabulary... thousands one hundred tens tenths ten equal parts in awhole hundredths one hundred equalparts in a whole	In addition to allprevious vocabulary... Thousandths one thousand equalparts in a whole Unitising To count as a singleunit	In addition to allprevious vocabulary... Ten thousandths ten thousand equalparts in a whole

Estimating	nearly close to	In addition to all previous vocabulary... Estimate A sensible guess	In addition to allprevious vocabulary... Exact A precise amount	In addition to all previous vocabulary... approximate close to the actualamount round To the closest group of	In addition to allprevious vocabulary... Conjecture a conclusion basedon evidence	Consolidate previously taught	Consolidate previously taught
Addition and subtraction	answer a solution to aproblem add bring two or more numbers together tomake a total double same number addedtwice take away remove a number ofitems from a set total how many altogethe requal is the same as	In addition to all previous vocabulary... Pictorial Representation to use pictures to show the maths Concrete objects To use objects to show the maths Mental do it in your head subtract take away addition a number to be addedto another number bonds a pair of numbers witha particular total partitioning splitting numbers into tens and ones inverse the opposite of anotheroperation	In addition to all previous vocabulary ...sum the result of one or more additions subtract take away, the inverse of addition column addition/ subtraction addition/subtractio nby writing one number below the other and working from right to left tens boundary when numbers jump over a multiple of 10 difference numerical differencefound by comparing quantities commutative can be done in any order	in addition to all previous vocabulary... Hundreds boundary when numbers jump over a multiple of 100 near double one away from adouble operation a mathematical process: addition, subtraction, multiplication anddivision	In addition to all previous vocabulary... Two-step problema problem that requires two operations to solve it	In addition to all previous vocabulary... Minuend The number to besubtracted from Subtrahend The number being subtracted Addend A number being added to another	In addition to all previous vocabulary... Order of operations Sequence in which operations should besolved

and division	Exactly the same Sharing put into equalgroups Doubling same number addedtwice halving Dividing into twoequal groups lots of groups of	previous vocabulary... Multiply /multiplication add equal groups Divide / division Sharing into equal groups array arranged objects inrows and columns	previous vocabu repeate adding number repeate subtractio subtractin samenu repeate number whole n which can't be two equ groups 1

previous
vocabulary... repeated addition adding the same number repeatedly repeated subtraction subtracting the samenumber repeatedly odd numbers whole number which
can't be divided into wo equal groups 1,3,5,7,9
previous vocabulary.

Factorise
Express an integer asthe product of its factors prime factor The factors of anumber that areprime long division

			even numbers whole number whichcan be divided into two equal groups $0,2,4,6,8$	inverse the opposite of anotheroperation formal method setting out working incolumn form		Can only be divided by itself and one long multiplication Multiplying two numbers by a number with two ormore digits short division Bus stop method when the divisor isless than 10 remainders The amountleft overafter a division Quotient The result of a division	Division by more than a single digit(chunking) common factor An integer which is a factor of two or moreintegers. common multiple An integer which is amultiple of two or more integers.
riacilioris (including decimals, percentages, ratio and proportion)	nuil One of two equalparts Double Same amount added twice Whole All of Share Split into equal groups	III UUUIIIVIIU UII previous vocabulary... quarter One of four equal parts Fraction An equal part of awhole equal part All parts exactly thesame size	II UUUIIIOII IU UII previous vocabulary... Three quarters Three out of four equal parts One third One of three equalparts Equivalent The same	III UUUIIIOrI IU Ull previous vocabulary.. equivalent fraction Two or more fractionswith the same value Numerator The number of parts outof the whole denominator The number of equalparts in the whole Tenths One out of ten equalparts Unit fraction A fraction where thenumerator is one Non-unit fraction A fraction where the numerator is greater than one Compare	III UUUIIIOII IO UII previous vocabulary... Decimal An integer and a partseparated by a decimal point One/two decimal place The number of digitsafter the decimal point decimal equivalent A decimal which hasthe same value as afraction Tenth One of ten equalparts Hundredth One of one hundred equal parts	II UUUIIIOII IU UII previous vocabulary... Proper fraction The numerator is less than the denominator Improper fraction The numerator is greater than the denominator Mixed number fraction An integer and afraction Simplify A fraction in its simplest form by finding the lowestcommon factor Percent One part per hundred	II UUUIIIOII IO UII previous vocabulary... Ratio The relative sizes o two or more values Simplest form A fraction in its simplest form by finding the lowest common factor Degree of accuracyA measure of the accuracy of a quantity.

							An unknown number in an equation whichcan take different values shown by aletter or number Substitute Put in the place ofanother Linear number sequence A set of numbers ordered according to a rule.
Measurement Length Capacity and volume Weight Temperature	Measure To find the size Mass How heavy something is wide More than normalwidth Narrow Less than normalwidth Balances Both sides have thesame mass Heavy More than normalmass light Less than normalmass Full Containing as muchas possible Empty. Containing	In addition to all previous vocabulary... ruler Used to measure distances with regularintervals volume The amount of space a3D object takes up Capacity The amount something can hold half/quarter full Holding half/quarter ofits capacity Length The distance betweentwo points Height The distance betweentop to bottom	In addition to all previous vocabulary... Weighing scale Measure the mass sitting on them Gram/Kilogram Unit of measure forweight and mass Meter/millimeter Unit of measure forlength Temperature A measure of warmthof an object Degree A unit to measure temperature	In addition to all previous vocabulary.. Distance How far it is from one thing to another Perimeter The length around theoutside of a shape Centigrade A unit used to measure temperature	In addition to all previous vocabulary... Depth The distance fromtop to bottom or back to front Width The measurement ofthe distance of the side of an object Area A measure of the space inside of a 2Dshape Measuring cylinder container used to measure volumes ofliquid Convert To change a value from one to another	In addition to all previous vocabulary... Imperial unit Old units of lengthincluding miles, ft and inch. Pint/gallon Imperial units to measure volume ofliquid Metric unit Used to measure length, weight or volume in mm, cm, m and $k m$.	In addition to all previous vocabulary... Circumference The distance aroundthe edge of a circle Tonne A unit of mass equalto 1000 kg Pound/Ounce Imperial unit of mass Miles Imperial unit of distance

	Tomorrow The day after today Clock / Watch A device to measuretime Week Seven days Weekend Saturday andSunday Children should use confidently: days of the week, Monday, Tuesday ...day, week morning, afternoon, evening, night bedtime, dinner timeplaytime	Half past 30 minutes after thehour Hands Parts on a clock showing how manyhours and minutes Children should useconfidently: months of the year (January, February ...)seasons: spring, summer, autumn, winter	Year 365 days Quarter past 15 minutes after thehour Quarter to 45 minutes after thehour, 15 minutes before the next hourDigital A clock where time isshown by digits Analogue A clock where time isshown by hands on a dial	Post meridiem - after noon 12-hour clock time 24 hours are dividedinto am and pm 24-hour clock time Runs from midnight to midnight	1000 years	Reach a place at the end of a journey Depart Leave a place at thestart of a journey	British Summer Time Daylight savings time in summer when clocks go forward
Money	Money What people use tobuy things Coin A piece of metal money that is small flat and round Spend To pay money Pay To give money to	In addition to all previous vocabulary... Pence The smallest unit of money Pound 100 pence Dear Costs a lot of money Cheap Costs little money Total How much altogether	In addition to all previous vocabulary... Change How much is returned after paying	Consolidate previously taught	Consolidate previously taught	In addition to all previous vocabulary... Discount A reduction in price Currency Official money of a country	In addition to all previous vocabulary... Profit The amount of money made that ismore than was putin at the start Loss Making less moneythan is spent

